Четверг, 02.12.2021, 07:13
Приветствую Вас Гость | RSS

StudHomeWork.ru

Меню сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Каталог работ


Дискретная математика (контрольная работа) - 15 вариант

Нужна готовая работа? пришлите ссылку на страницу в WhatsApp или Telegram

Стоимость готовой работы: 750 рублей

Дискретная математика (контрольная работа) - 15 вариант - Артикул: 190203192656-15
190203192656-15

  Вариант 15

№1        Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а)  (A\B) \ C = (A\C) \ B                б)  (A\B)×C=((AB)×C)\(B×C).

№2        Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P A×B, P B2. Изобразить P1, P2 графически. Найти P = (P2P1)1.  Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P= {(a,1),(a,2),(b,3),(b,4),(c,3),(c,4)};   P= {(1,1),(1,4),(2,1),(2,2),(2,4),(3,3)}.

№3        Задано бинарное отношение P  Z2; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P = {(x,y) | (x + y) нечетно}.

№4        Доказать утверждение методом математической индукции:

№5        Бригада из одиннадцати взломщиков одновременно выходит на грабеж четырех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по трем одинаковым камерам (не менее чем по одному в каждую)?

№6        Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 9, 10, 12?  б) делящихся ровно на одно из этих трех чисел?

№7        Найти коэффициенты при  a=x2·y2·z3, b=x2·y3·z, c=y4·z4  в разложении (3·x+5·y2+2·z)6.

№8        Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2·an+2 + 9·an+1 + 7·an = 0· и начальным условиям   a1=5, a2=30.

№9

Орграф задан матрицей смежности. Необходимо:        
а) нарисовать граф;        
б) выделить компоненты сильной связности;        
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).

0
1
1
0
0
0

1
0
0
0
0
0

0
0
1
0
0
0

0
0
0
0
1
1

0
0
1
1
0
1

0
0
1
1
0
1

№10        Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;        
б) кратчайшее расстояние от вершины v1 до остальных вершин графа, используя алгоритм Дейкстры. 





Источник: 190203192656-15
Категория: Курсовые, контрольные, задачи, тесты (Pt1) | Добавил: vrn-student (05.08.2019) | Автор: 750 W
Просмотров: 94
*Стоимость готовой работы: 750 рублей

*Срок обработки заказа от 5 минут до 24-х часов

Нужна готовая работа? пришлите ссылку на страницу в WhatsApp или Telegram

Всего комментариев: 0
avatar
Вход на сайт
Поиск

Copyright MyCorp © 2021