Задание 1 1. Постройте корреляционное поле и сформулируйте гипотезу о форме связи. 2. Оцените параметры уравнений линейной, степенной, обратной, экспоненциальной, логарифмической, парной регрессии. 3. Оцените тесноту связи при помощи коэффициента корреляции, индекса корреляции, коэффициента детерминации. 4. Используя средний (общий) коэффициент эластичности, дайте сравнительную оценку силы связи фактора с результатом. 5. Оцените при помощи средней ошибки аппроксимации качество уравнений. 6. С помощью t-критерия Стьюдента оцените статистическую надёжность оценок коэффициентов регрессии. 7. С помощью F-критерия Фишера-Снедекора оцените статистическую надёжность результатов регрессионного моделирования, выберите наилучшее уравнение регрессии по значениям характеристик, рассчитанных в пп. 4, 5. 8. Рассчитайте значение статистики DW (Дарбина-Уотсона) и сделайте вывод о наличии автокорреляции в ряду остатков. 9. Рассчитайте прогнозное значение результата, если значение фактора увеличится на 10 % от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости а = 0,05. 10. Полученные результаты и выводы оформите в аналитической записке. Вариант 9. Изучается зависимость потребительских расходов на душу населения у (тыс. руб.) от денежных доходов на душу населения х (тыс. руб.) по данным 20ХХ г. № 1 2 3 4 5 6 7 8 9 10 У 409 452 367 328 460 380 439 344 401 514 X 540 682 537 589 626 521 626 521 658 746
Задание 2 Выберите в таблице, начиная с номера Вашего варианта, 20 последовательных значений индекса человеческого развития (показатель Y) , соответствующих им значений ожидаемой продолжительности жизни при рождении в 2008 г. (фактор X1 и суточной калорийности питания населения (фактор X2). 1. Постройте двухфакторные регрессионные модели Y = а0 + а1X1 + а2X2 и lnY = b0 + b1lnX1 + + b2lnX2. 2. Оцените статистическую значимость уравнений регрессии и их параметров при помощи F-критерия Фишера-Снедекора, частных F-критериев и t-критерия Стьюдента. 3. Постройте графики остатков, проведите тестирование ошибок уравнения множественной регрессии на гетероскедастичность, применив тест Гольдфельдта-Квандта. 4. Постройте парные уравнения регрессии и оцените статистическую значимость уравнений и их параметров при помощи критериев Фишера-Снедекора и Стьюдента. Какое из уравнений лучше использовать для прогноза? 5. Постройте матрицу парных коэффициентов корреляции. Установите, проявляется ли в модели мультиколлинеарность. 6. На основе линейного уравнения множественной регрессии постройте частные уравнения регрессии, рассчитайте частные коэффициенты эластичности и охарактеризуйте изолированное влияние каждого из факторов на результирующую переменную (в случае, когда другие факторы закреплены на среднем уровне). 7. Рассчитайте коэффициент детерминации и скорректированный индекс множественной корреляции. Охарактеризуйте тесноту связи рассматриваемого набора факторов с исследуемым результативным признаком. 8. Рассчитайте частные коэффициенты корреляции и охарактеризуйте тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включённых в уравнение регрессии. No Страна Индекс человеческого развития Y Ожидаемая продолжительность жизни X1 при рождении в 2010 г., лет Суточная калорийность питания населения Х2, ккал на душу 9 Германия 0,906 77,2 3330 10 Греция 0,867 78,1 3575 11 Дания 0,905 75,7 3808 12 Египет 0,616 66,3 3289 13 Израиль 0,883 77,8 3272 14 Индия 0,545 62,6 2415 15 Испания 0,894 78,0 3295 16 Италия 0,900 78,2 3504 17 Канада 0,932 79,0 3056 18 Казахстан 0,740 67,7 3007 19 Китай 0,701 69,8 2844 20 Латвия 0,744 68,4 2861 21 Нидерланды 0,921 77,9 3259 22 Норвегия 0,927 78,1 3350 23 Польша 0,802 72,5 3344 24 Республика Корея 0,852 72,4 3336 25 Россия 0,747 66,6 2704 26 Румыния 0,752 69,9 2943 27 США 0,927 76,6 3642 28 Турция 0,728 69,0 3568
Задание 3 1. Применив необходимое и достаточное условие идентификации, определите, идентифицировано ли каждое уравнение приведённой модели одновременных уравнений. 2. Определите метод оценки параметров модели. 3. Запишите приведённую форму модели Вариант 9 Макроэкономическая модель: Ct = b1 +b2St+b3Pt, St = a1 + a2Rt + a3R t - 1+ a4t, R t=St + Pt где: С - личное потребление; S - зарплата; P - прибыль; R общий доход.
Задание 4 В таблице приведены данные об уровне производительности труда (выпуск продукции в среднем за 1 час, % к уровню 1982 г.) по экономике США (X) и среднечасовой заработной плате в экономике США (Y) в сопоставимых ценах 1982 г., долл., в 1960-1989 гг. Выберите в таблице, начиная с номера Вашего варианта, 20 последовательных значений показателя Y и соответствующего ему значения фактора X. 1. Постройте графики временных рядов X и Y. 2. Постройте автокорреляционную функцию каждого временного ряда и охарактеризуйте его структуру. 3. Проверьте каждый ряд на наличие тренда, проведите сглаживание при помощи простой скользящей средней. 4. Для каждого ряда постройте линейный и нелинейные (степенной, показательный, логарифмический, гиперболический) тренды и среди них выберите наилучший. 5. Определите коэффициент корреляции между изучаемыми рядами по отклонениям от трендов. Выполните прогноз уровней одного ряда исходя из его связи с уровнями другого ряда. t X Y 9 85,4 7,89 10 85,9 7,98 11 87 8,03 12 90,2 8,21 13 92,6 8,53 14 95 8,55 15 93,3 8,28 16 95,5 8,12 17 98,3 8,24 18 99,8 8,36 19 100,4 8,4 20 99,3 8,17 21 98,6 7,78 22 99,9 7,69 23 100 7,68 24 102,2 7,79 25 104,6 7,8 26 106,1 7,77 27 108,3 7,81 28 109,4 7,73
Источник: RW-1700004355 |